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Abstract 

This paper discusse,y work done by JPL’s Parallel 
Applications Technologies Group in helping scientists 
access and visualize very large data sets through the use 
of multiple computing resources, such as parallel 
supercomputers, clusters, and grids. These tools do one 
or more of the following tasks: visualize local data sets 
for local users, visualize local data sets for remote users, 
and access and visualize remote data sets. The tools are 
used for various types o j  data, including remotely sensed 
image data, digital elevation models, astronomical 
surveys, etc. The paper attempts to pull some common 
elements out of these tools that may be useful for others 
who have to work with similarly large data sets. 

1. Introduction 

The Jet Propulsion Laboratory (JPL) is run by the 
California Institute of Technology for NASA, as the lead 
NASA center for robotic space exploration. To date, 
most of the data taken by JPL’s spacecraft, as well as 
other NASA spacecraft, are sent to Earth for processing 
and analysis. As the spaceborne instruments improve, 
more and more data is taken and then returned to Earth. 

Many common data sets are now each 5-10 TB, and 
the number of data sets is also increasing. Desktop tools 
often have difficulty working with data sets of this size. 
Simply storing the data and accessing it is difficult. 
Gaining knowledge from data is still hard, but one very 
effective method is to visualize the data. 

This paper discusses work done by JPL’s Parallel 
Applications Technologies (PAT) Group. The PAT 
Group’s goal is to help JPL and Caltech scientists deal 
with large data sets. The remainder of this paper will 
discuss a number of tools that the PAT group has 
developed, for a few particular situations. The first is 
working with local data sets that the scientists themselves 
have generated. The second is providing access and 
information from data developed by the scientist to others 
located elsewhere. Finally, the third is accessing and 
working with data developed by other scientists. 

2. Working with local data 

Supercomputing is often defined by comparison with 
desktop systems, where the exact definition frequently 
changes. One example is computing that is 2 orders of 
magnitude more powerful than that available on a 
desktop. When data is generated on a supercomputer, it is 
often similarly larger in size than data that could be 
generated on a desktop. Not coincidentally, data sets of 
this size are also difficult to deal with in a desktop system. 

Figure 1. Synthetically-enhanced Martian terrain. (30 m 
resolution Vikino imaae enhanced to 2 cm resolution.\ 

1 common method for working with such data sets is to 
eave them on the supercomputer on which they were 
leveloped, and to return just the visual data to the user’s 

desktop. 
An example data set as shown in figure 1 is 

synthetically-enhanced Martian terrain data. JPL has 
collected coarsely-sampled elevation data of over the 
surface of Mars. When planning future missions, 
algorithms such as entry, descent, and landing (EDL) and 
surface navigation must be tested against simulated 
terrain. The PAT group has developed a terrain server to 
supply users with such terrain. We have parallelized an 
application previously developed at JPL, [ 13 and created a 
system that allows users to launch jobs and return terrain 
data generated either by that job or previous jobs. The 
overall system is called TEDS, the Terrain and 
Environmental Data Server. 

2.1. Digital Light Table 

Two types of data are often used to represent terrain 
for a particular geographic area: a digital elevation model 
(DEM) that gives a height value (z) for each location 
value (x,y), and image data that includes one or more 
values for each pixel. When the pixels are mapped to 
location values, the two datasets are used together as a 
terrain model. One tool that has been developed to 
visualize terrain models is the Digital Light Table (DLT). 



For multiple dirpbyr. each graph81c engino selocts the 
t i l a  and ~ e r f o m n  the rendenno for its disolw: 

Fiaure 2. Diaital Liaht Table (DLT) Architecture I 
The DLT was originally built to allow scientists to 

explore a SAR (synthetic aperture radar) mosaic of the 
Amazon basin [ 2 ] .  This goal led to a number of 
requirements, including the ability to pan and zoom 
through the data in real time, along with the ability to 
scale to large input sizes, over 20 billion pixels, and to 
scale to large output sizes, over 7 million pixels. 

Multiple graphics engines are used to permit 
scalability of output image sizes, and to assure that the 
pan and zoom operations operate in real time. Figure 2 
shows the architecture of the DLT. The left image shows 
the input data set broken up into tiles. The middle column 
shows the graphics engines, and the right image shows the 
output images (arranged as a single image.) A user 
interacts with any one graphic engine, which transfers any 
inputs to all the other graphic engines, using a message 
passing approach. Other than this, each graphic engine 
operates independently. Each selects the tiles needed to 
build its portion of the output image, reads the tiles, and 
builds the output image:. Since the DLT is meant to 
display terrain data, we must tile the DEM files similarly 
to the image files. This permits fast panning. When the 
DLT was built, the only graphics engine fast enough was 
the Silicon Graphics (SGI) Reality Engine, and thus, the 
DLT was run on SGIs with multiple graphics pipes. 

The use of multiple graphic engines also permits 
other forms of collaboration. Since one graphic engine 
can drive one display, we can physically separate the sets 
of engines and displays. Specifically, we can use the 
graphics engine and the display in a workstation as one of 
these units. In other words, scientists in multiple offices 
can easily work with a single data set. When one takes 
control and changes, the view, the views on all the others 
change identically. 

As mentioned, the input image is divided into tiles. 
For each set of four tiles, a single tile is created with the 
same number of pixels and half the resolution as one of 
that set. This process of creating new levels of tiles is 
continued until a level is  obtained where only one tile 
exists. This scheme, sometimes called an image pyramid 
[3], adds about 1/3 disk storage overhead, but permits fast 

zooming by the graphics hardware because the graphics 
engines can choose the right level at which to operate, 
limiting the amount of interpolation needed. The DEM 
files are pyramided similarly to the image files, for the 
same reason. 

The original data for which the DTL was written 
included multiple polarizations, and data take in two 
seasons (wet and dry, about 6 months apart.) For this 
reason, the DLT permits any band of data to be mapped to 
any of the three colors (red, green, blue). This allows, for 
example, for the changes between the two seasons to be 
clearly viewed while panning and zooming. One can also 
map bands to each color then flash between the sets as an 
additional method for visual change detection. Finally, 
the DLT can also overlay vector data on images. 

Recently, a variant of the DLT called the Multi- 
Surface Light Table (MSLT) has been developed. The 
MSLT was designed to be used in visualization of data 
from earthquake simulations. The main modifications 
from the DLT are the use of both commodity PCs and 
OpenGL’s texture blending capability, which give the 
MSLT the ability to display multiple surfaces by variable 
opacity, and linking of image data and metadata. 

Figure 3 shows a sample image from the MSLT. One 
can see terrain, and below the terrain, additional planes. 
The planes represent fault segments. In this particular 
image, the color of the segments represents the stress on 
that segment. Yellow is low stress, and dark blue is high 
stress. Also shown on the fault segments are arrows that 
are used to indicate movement along a fault. An 
additional feature, not shown in the figure 3, is that the 
user can bring up another window that contains metadata 
about each of the fault segments. The user can click on 
one or more fault segments, and they will be highlighted 
in the image, or the user can select one or more fault 
segments in the image, and they will be highlighted in the 
text window. 

Figure 3. A sample MSLT image 



2.2. FUVA 

The Remote Interactive Visualization and Analysis 
System (RIVA) [4, 51 is another tool that can visualize 
terrain data, but unlike the DLT/MSLT, it is designed 
with the underlying geometric model of a sphere, and thus 
can accommodate global (planetary) datasets. 

2.2.1. RIVA Architecture. Figure 4 shows the RIVA 
system architecture. Around the core renderer, RIVA is 
equipped with a suite of Graphic User Interface (GUI) 
programs for data navigation, display and animation 
editing. The main RIVA data navigator program, Flexible 
Flyer, resides on an SGI workstation. A low-resolution 
copy of the dataset is loaded into the Flexible Flyer, 
where the user can navigate the dataset and select the 
desired views. As the user navigates, hisher viewpoint is 
transmitted to the whole earth renderer residing on a 
remote supercomputer via a network interface program, 
NetHost. The renderer renders the image using a full 
resolution copy of the dataset and sends the resulting 
image back to a display window, receive-display, on the 
user's workstation. 

RIVA is designed for both interactive exploration of 
large datasets and batch generation of animations. The 
Flexible Flyer has a key frame editor built in where key 
frames can be inserted, appended, modified, and 
previewed. A separate 2-D map display window, xshow, 
displays the key frames or the flight path on a 2D map of 
the data. It helps a user to identify his location and 
direction in a global orientation and also help a user to 
select key kames. Once the key frames are selected, the 
flight path is calculated using a cubic spline algorithm. 
The renderer then renders the flight path in the batch 
mode and saves the animation fi-ames into disk. 

The middle section of Figure 4 is the network 
interface programs for RIVA. NetHost is the interface 

FUVA Architecture 
SGl Ongn 2ow 
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Fiaure 4. The RIVA svstem architecture. 

(or, host) program between the GUI and the renderer. 
RIVA uses a text-based command language to  
communicate with the renderer. NetHost processes and 
dispatches commands, and receives and distributes 
results. The commands may come from a network 
interface, such as a socket stream fed by the GUI 
program, or from a disk file. The Router is a routing 
daemon that facilitates dynamic, reliable, multi-cast 
message passing services. It detaches the physical 
connection between the renderer and the GUI program, 
thus allowing either part of the program to run as a stand- 
alone entity, a renderer to  feed multiple displays on 
different workstations, or even one GUI program to 
control two parallel renderers. 

2.2.2. Parallel Algorithm. Rather than using geometric 
objects (such as triangular strips) to represent the digital 
terrain as all the hardware-based terrain renderers do, 
RIVA represents and renders the terrain pixel by pixel. It 
uses a parallel forward projection rendering algorithm 
with both object space decomposition and image space 
decomposition. The input data, both image and elevation, 
in either cylindrical projection or sinusoidal projection, 
are equally divided into small tiles and distributed to each 
rendering processor. Those processors apply the 
transformation matrix to their local data and transform 
them into image space coordinates. 'Each rendering 
processor produces patches of images scattered in the 
final image. The image patches are then merged and 
composited into the final image using a binary-swap 
method. The image tiles can be rendered in any order and 
there is no communication required in the transformation 
stage. The rendering processors synchronize globally 
before the final compositing begins. The rendering speed 
is thus determined by the slowest processor in the 
transformation stage. 

RIVA is careful in storing and accessing data in order 
to render as efficiently as possible. RIVA stores its data 
sets in data pyramids, similar to that of the DLT/MSLT, 
but it generates the data pyramids on-the-fly to save 
memory at the cost of some computation overhead. RIVA 
also uses two culling techniques to eliminate input tiles 
that fall outside the field of view of a given viewpoint. 
Horizon Test calculates the distance from the viewpoint to 
the center of each tile and eliminates the tiles that fall 
behind the horizon. This test can eliminate almost half of 
the tiles in a global dataset. Tile Test eliminates the tiles 
whose projected areas fall outside the viewport. 



(8)  P) 
Figure 5. Multiple surfaces composited by blending: (a) 30-meter LandSat, (b) two surfaces blended with the 2.25-meter 
dataset at ooacitv=O 58 (d 2.25-meter aravscale dataset. 

2.2.3. RIVA Features. There are several unique resolution (a). Setting the opacity of the top surface to 
features that distinguish RIVA from other terrain 
renderers. The first is multiple data representation. 
Internally, RIVA represents the data using a spherical 
model regardless of whether it is a global dataset or a 
regular gridded dataset. Externally, RIVA can process 
data in either 2D Cartesian, 3D Cartesian, or 3D Polar 
coordinates. The dataset can be stored in either 
Sinusoidal projection to save space or in Cylindrical 
projection for efficient processing. RIVA is flexible and 
tries to accommodate different application needs and 
different data representations. 

The second feature is Multiple Surface Rendering. 
RIVA can render multiple terrain surfaces with different 
resolutions, different data formats, and different 
coverages, somewhat similarly to the MSLT. RIVA’s 
multiple surfaces can be combined using various blending 
methods. Figure 5 is an example of alpha-blending of 
two surfaces. The top surface is a grayscale image of 
Coronado Island at 2.2s-meter resolution (c) and the 
bottom surface is a color LandSat image at 30-meter 

I Figure 6. Multiple ocean surfaces composited by zbuffer. I 

- -  
0.58 produces a colored image at 2.25-meter resolution 
(b). Figure 6 is an example of zbuffer compositing. The 
top surface is a North Atlantic Ocean surface with color 
representing ocean surface temperature. The bottom 
surface is a topographic map of the ocean bottom. The 
top surface is raised up so that the two surfaces can be 
separated. 

The third RIVA feature is Large Dataset Rendering. 
RIVA allows out-of-core rendering for datasets that 
exceed the capacity of the physical memory. A lower 
resolution sample of the original dataset has to be 
prepared in advance. RIVA loads the lower resolution 
dataset and renders it until the data pyramiding algorithm 
identifies that a higher resolution image tile is needed. 
The full resolution image tile will then be loaded into 
memory. A memory cache is used to keep the most 
recent tiles used to reduce disk I/O. FUVA also renders 
time-varying datasets generated by simulations. Similar 
to out-of-core rendering, only the data for the first time 
step reside in the memory. The remaining data will be 
loaded into memory when the animation starts. 

The last RIVA feature is High Resolution Animation. 
RIVA is not only scalable to large input datasets but also 
scalable to large image outputs. R N A  images are not 
limited to the framebuffer size or the screen resolution as 
with other terrain renderers. RIVA can render a large 
image in multiple passes by partitioning the images into 
multiple viewports. Theoretically, there is no limit to the 
image size in RIVA. 

3. Sharing Data Visually 

A common problem at NASA is that of having a 
collection of data that has been taken and possibly 
manipulated in some way, which is intended to be shared 
with others. At one time, the method for distributing such 
data was to put it on a tape and mail it to the end user. 
For small amounts of data, this has now generally been 
replaced by providing ftp or web access. However, for 



large data sets, sending files on a tape has often been 
replaced only by sending them on CDs or DVDs. Our 
intent is to use the Internet for both small and large files, 
and specifically, to allow users to obtain just the data they 
desire. We can do this because we can take advantage of 
both falling disk prices to put all the data on disk for fast 
access, and we can use parallel computing that’s hidden 
from the user to provide particular data products derived 
from the data on disk. 

MapUS is an example of a project that demonstrates 
this idea. MapUS is a Landsat mosaic of the continental 
United States. This 6-band, 150-GB (compressed), 
215,000 by 95,000 pixels image with 1-arc-second 
resolution was built from 428 individual Landsat patches 
of the Multi-Resolution Land Characteristics (MRLC) 
dataset, using custom-designed software based on SGI 
Imagevision framework and run on JPL supercomputers 
to accomplish this task as a single step operation, with 
minimal operator input. As has been discussed previously 
in this paper, we store the mosaic in a tiled, pyramided 
format. However, the tiles are not stored as separate files, 
but rather, a new, custom file-format was developed. [6] 

We used SGI’s Imagevision (IV) Library as a 
framework for both building the mosaic and building 
custom images from the mosaic. It supports a large 
selection of image file formats, but none of the existing 
ones provided all the features we needed to build and 
store the mosiac. Since it is easily extendible, a custom 
file format was designed and implemented. The DLT 
pyramided data format was used as the starting point, as it 
provides hierarchical, multispectral and paged image 
storage, This format was also greatly enhanced to supply 
additional features. The DLT format specified the order of 
the pages within the file, the offset at which each page is 
stored being uniquely determined by a linear combination 
of resolution level, page corner position within the whole 
image and spectral channel. 

To make this format more flexible, one level of 
indirection between the page file offset and the page 
location within the image was introduced. This was done 
by the introduction of a separate index file, containing a 
small record for every page. This record specifies the 
storage size of the page and the offset of the page within 
the data file. The order of records in the index file is 
predetermined, the same iEi the page order in the original 
image file format. This addition makes possible per-page 
compression since the size of a page is now flexible, and 
also adds efficient sparse image storage. We support both 
JPEG and LZW image compression since both are readily 

available and are used extensively. In addition to 
straightforward versions of these, a few custom variations 
were attempted, but they are still in the early development 
phase. 

Another useful feature of this image file format is the 
fact that the image file is consistent as soon as an empty 
data file and a zero filled index file is created. A record 
containing a size of zero specifies that the whole page is 
black, and no additional storage space is required. A 
newly created file, with a zero size data file and an index 
file filled with zeros is thus a perfectly valid black image. 
As pages are written or modified, they are added at the 
end of the file, and the record in the index file is 
populated. Thus, the output file can be opened for 
inspection while it is being created, allowing early 
detection of potential problems and an easy visual 
inspection of the generated images. Using this format, the 
image may be modified by simply appending the new 
pages of image data to the data file and modifying the 
corresponding records in the index file. If a copy of the 
previous index file is made and preserved, simple access 
to both versions of the file is possible at a minimal storage 
cost. 

MapUS is actually two servers. One is a standard 
web server that is also a client to the second server. The 
second uses a standard called the Web Map Service [7] to 
accept requests from a client (the web server) and deliver 
the image data back, ultimately to the user. By building 
this as two servers, we can satisfy two sets of customers: 
users who want to look at the data through our web 
server, and users who want to build products based on our 
data just using our WMS server. Our web server 
performs the actual image generation using the IV library 
to take advantage of the parallelism available on our SGI 
computers. While this allows us to return most results in a 
few seconds, it limits image generation to the IRIX 
platform. To ensure portability, the image generation is 
confined to  a separate binary that is executed as a 
subprocess. Unfortunately, this adds significant overhead 
as the image must be encoded and then decoded for each 
pipe between the processes. To overcome this, there is a 
compile-time option which will include the image 
generation code in the server, allowing much more 
efficient operation by avoiding unnecessary image 
encoding, piping, and decoding. When this option is 
disabled, the server does not rely on the Imagevision 
library, which preserves portability, but if the 
Imagevision library is available, significant speed gains 
can be realized [SI. 



Figure 7. Portion of OnEarth mosaic, showing the 
confluence of the Illinois and Mississippi Rivers at 112- 
arc-asecond resolution. 

We are also now near the end of development of a 
new server that will serve a mosaic of the land surface of 
the Earth at 1/2-arc-second resolution. Figure 7 shows a 
portion of this mosaic. The mosaic will be about 20 times 
larger than the MapUS mosaic. Past experience with 
storage systems together with budget as a consideration 
led to the selection of a Linux storage cluster. Other 
projects with similar storage requirements joined the 
development, with the result being a ten-system Linux 
storage cluster offering 40TB of storage space. The 
system, named Raid Again Storage using Commodity 
Hardware And Linux (RASCHAL), has been operational 
since April 2003. Each unit is built around a rack- 
mountable PC case containing one Intel XEON 2.4GHz 
CPU hosting two separate 3-ware IDE RAID controllers, 
each controller being configured as a 7+1 RAID 5 disk. 
The IDE drives used are Maxtor 250GB drives, selected 
for maximum capacity and minimal power requirements. 
At the next level, two virtual drives residing in the same 
case are striped together using the Linux metadrive 
facility, thus the RAID again name. Dual Gigabit ethernet 
is standard on every R.4SHCAL unit, and a 24 port 
Gigabit Ethernet router provides the communication 
matrix to the client systems. To make the whole system 
simpler to maintain, the storage units are configured to 
boot from a remote host machine. 

The OnEarth WMS mosaic project is the first user of 
this storage system, having, to date, restored more than 
7000 of the original Landsat 7 scenes, and produced a few 
continent size mosaics. This storage system is being used 
for the mosaic building project and for hosting the data 
for the WMS site [9]. 

4. Accessing and Visualizing Remote Data 

Another general problem is working with data stored 
in remote archives. Typical problems are understanding 
what data exists in the archive, what data exists in which 
file in the archive, and how these files are accessed. 
Another problem is building visualizations from this 
remote data. The PAT group has worked on a number of 
projects related to these problems, but in this paper, we 
will focus on astronomy applications. In these projects, 
we attempt to hide the complexity of accessing data from 
remote archives and building custom visualizations 
behind a simple interface, which is again that of a web 
browser. 

4.1 The yoursky server 

The only client software required to use the yoursky 
custom astronomical image mosaic server is the 
ubiquitous web browser. By filling out and submitting 
the form at http://yourSky.jpl.nasa.gov/, users have 
custom access on their desktops to  all the publicly 
released data from the member surveys. In this context, 
“custom access” refers to new technology that enables on- 
the-fly astronomical image mosiacking to  meet user- 
specified criteria for: region of the sky to be mosaicked, 
data set to be used, resolution, coordinate system, 
projection, data type, and image format [lo, 111. All 
mosaic requests are fulfilled from the original archive 
data so that the domain experts maintain control and 
responsibility for their data and data corruption due to 
resampling is minimized because only one reprojection is 
done from the raw input data to the end product. 
Currently, the data archives that are accessible with 
yoursky are the Digitized Palomar Observatory Sky 
Survey (DPOSS) [12] and the Two Micron All Sky 
Survey (2MASS) [14]. DPOSS has captured the entire 
northern sky at 1 arc second resolution in three visible 
wavelengths. 2MASS has captured the entire sky at 1 arc 
second resolution in three infrared wavelengths. The 
yoursky architecture supports expansion to include other 
surveys, without regard to the native image partitioning 
scheme used by a particular survey. 

The architecture for yoursky is illustrated in Figure 
8. In the figure, the numbered descriptions on some of the 
arrows give the steps take to fulfill a typical mosaic 
request. The procedure is: 

The clients at the top left of the illustration are 
the web browsers that may be used to submit 
requests to yoursky, through use of a simple 
HTML form interface. 
The yourSky Mosaic Request Manager polls for 
mosaic requests in the request queue and hands 
them off to the Mosaic Request Handler, using a 
user-priority scheme where the priority is 

1. 

2. 

http://yourSky.jpl.nasa.gov
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Figure 8. The architecture of yoursky. 

3. 

4. 

5 .  
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inversely related to  the number of pixels 
generated for the user in the last 24 hours. 
The Mosaic Request Handler queries the Plate 
Coverage Database (containing metadata 
describing the extent of the sky covered by the 
files in the raw input data) to determine which 
input image plates from DPOSS or 2MASS are 
required to fulfill the mosaic request. 
A fixed-size data cache is maintained on the 
yoursky server containing copies of recently- 
used input files is checked for the needed files. 
If all the files exist in the cache, the parallel 
mosiacking code is started to build the desired 
mosaic. If all the files are not in the cache, an 
archive request is inserted in the request queue. 
The Archive Request Manager polls for archive 
requests and hands them off to the Archive 
Request Handler.. 
The Archive Request Handler retrieves the 
images for the archives, using the correct clients 
for each archive. When all the files have been 
retrieved, the parallel mosiacking code is started. 
When the mosaic is completed, an email is sent 
to the user with a URL that can be used to access 
the mosaic. 

This process is fairly general. To add new sources of 
data, two changes need to be made. First, the plate 
database must be updated with the extents of the plates in 
the new data source. Second, the mechanism to access 
the data from the archives must be implemented within 
the Archive Request Handler. yoursky is one of a 
number of applications designed to provide access to 
these data sources. All of these applications need to do 
these two things. Fortunately, the astronomy and 
computer science communities, working together as the 
US National Virtual Observatory (NVO), are converging 
on standard methods for them called Conesearch and 
SIAP (simple image access protocol), respectively [ 151. 

Another issue with yourSky is user authentication 
and accounting. This is something that could be handled 
within the parallel mosiacking code. This code is 
currently run on dedicated resources so that the authors of 
yourSky are really responsible for all yourSky usage. 
This model is probably appropriate for small mosiacking 
jobs, in the same way that users of web services are not 
charged for their use of a web server. However, for large 
mosaics, it is desirable to be able to tie the processing to a 
unique user. The Grid community is studying this issue, 
and some answers are starting to appear. A version of 
yoursky that is Grid-enabled has been developed, called 
yourSkyG [16]. 

4.2 Montage 

One issue with the current version of yourSky is that, 
while it operates quickly and thus is good for generating 
“browse” images, it does not preserve the calibration and 
astrometric fidelity of the data. Another project, 
Montage, builds on yoursky through the following 
improvements: 

9 

Improved performance throughput 
Interoperability with grid infrastructure 
Compliance with NVO architecture 

Montage’s architecture is shown in Figure 9. 
Montage consists of two independent but interoperable 
components: a background rectification engine, 
responsible for matching background radiation across 
images, and a coadditiodreprojection engine, responsible 
for computing the mosaic. Montage will support all 
reprojections defined in the World Coordinate System 
(WCS) [18]. 

The Montage processing paradigm consists of three 
main parts: reprojection of images to  a common 
scale/coordinate system; background adjustment of 
images to a common flux scale and background level; and 
coaddition of reprojectedlbackground-corrected images 
into a final mosaic. The background adjustment process 
involves fitting the differences between overlapping 
images on a local (for small mosaics) or global scale and 
determining the parameters for smooth surfaces to be 
subtracted from each image to bring them to the common 
scale. These parameters can either be determined on the 
fly or done once and saved in a database for any future 
mosaics done with the same images. The advantage of the 
former is that it allows variations in the fitting algorithms 
to deal with the special cases and, for small regions, will 
probably be more sensitive to local variations than a 
global fit. The advantage of the latter is that it provides a 
uniform view of the sky and a tested “best fit” that can be 

Preservation of scientific fidelity in the mosaics 
Support for the “Drizzle” algorithm [ 171 
Application of physically based background 
subtraction models 
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certified as such by the data provider. We plan to use both 
approaches, deriving and storing in a relational DBMS at 
least one set of background fit parameters for the f i l l  sky 
for each image collection, but allowing the user the option 
to invoke custom background processing if they think it 
will provide a better mosaic for a local region. 

The image reprojection within Montage takes up 
nearly all the run time. This step however, is inherently 
parallelizable, and can be run on however many 
processors are available to it. When deployed in 2005, 
the final version of Montage is required to sustain a 
throughput of at least 30 square degrees (e.g. thirty 1 
degree x 1 degree mosaics, one 5.4 degrees x 5.4 degrees 
mosaic, etc.) per minute on a 1024 x 400 MHz R12K 
Processor Origin 3000 or machine equivalent. Currently, 
Montage has been released as a single processor 
application, built as a set of executables [19]. The time to 
run this code on our test system, a PC with a 1.4-Ghz 
IA32-processor running l h u x  is about 100 seconds per 
512x1024 pixel 2MASS image. 

We have also demonstrated two prototypes of a 
parallel Montage. In one case, we scripted the process 
and data flow, assuming that all processors share a file 
system. This prototype, called Atlasmaker [20], obtained 
a speedup of approximately 60 on 64 nodes. The second 
prototype I211 is more general. It relies on a Montage- 

specific web server that builds an abstract DAG (directed 
acyclic graph, a definition of the data and processing 
dependencies), a general grid software package called 
Pegasus that builds a concrete DAG (a DAG that is tied to 
specific computational resources) from the abstract DAG, 
and another program called Condor DAGman [22] that 
then runs the concrete DAG on a collection of grid 
computers. This prototype is, however, currently much 
slower and only permits a small speedup. 

All three versions of Montage share the use of NVO 
services to determine which input images need to be used 
and to access those images. The second prototype can 
save intermediate files as well as output files using a 
replica location service (RLS, a Globus component [23]) 
to allow future mosaics to either be simply retrieved or 
built more quickly. 

5. Conclusions 

This paper has described a number of existing tools 
developed by the PAT group to make sense of large 
amounts of data: Digital Light Table (DLT), MSLT, 
RIVA, MAPUS, OnEarth, yoursky, and Montage. These 
tools all were developed in collaboration with scientists. 
They combine three ideas in three areas: visualizing a 
scientist’s data; allowing others to view images generated 
from a scientist’s data; and accessing and visualizing 
remote data. Many of these applications try to hide the 
complexities of accessing remote data from archives and 
running jobs on supercomputers from the users. These 
applications have given us a set of tools that we or others 
can use for new applications. 
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